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Abstract  

The study applied Seasonal autoregressive integrated moving average (SARIMA) in 

modelling inflation rate in Nigeria   from 2003-2016. The time plot of the series   showed 

Seasonality but not obvious trend. The raw data is non-stationary at critical level (1%, 5% 

and 10%). Time plot of the seasonal differencing of inflation rate at lag12 (SDINF) showed a 

seasonal series. The ADF test statistics is the grater that the critical values at 1%, 5% and 

10% this means that the series is non- stationary. Non-seasonal differencing of seasonal 

differencing of inflation rates (DSDFLA) in Nigeria produced a correlogram with spike of 

ACF and PACF at lag 12 showing a seasonal component. The ADF test statistics (DSDINF) 

is less than the critical values at 1% 5% and 10%. Five model were estimated and the best 

model is the model that minimise the Akaike information criterion (AIC) (SARIMA 

(001)*(211)12) with AIC of (3.320166). The plot of the residual correlogram shown adequacy 

of the model. A one-year (12 months) forecast from January 2017 to December 2017 is based 

on the best fitted model. 

 

Key Word: Forecasting Inflation rate, Seasonal ARIMA Model. 

 

Introduction 

Inflation has been a problem facing many countries of the world especially unindustrialized 

countries. It started during the early 60s, which results to the incorporation of economic 

policies as measures to reduce the effect of inflation in the societies.  Most of these measures 

taken by developing countries to check the problem of inflation are in the form of the use of 

central bank instruments of credit control. This is aimed at reducing the volume of money in 

circulation and sustaining it to ensure low cost of living. Nigeria as a developing country is 

also faced with the problem of inflation. In Nigeria inflation is a problem for policy makers 

since 1990s, and ever since then till date the rate of inflation is on the increase. Inflation is 

neither new to the Nigerian economy system of Nigeria nor the world at large. Evidence has 

shown that inflation persist both in the advanced countries and unindustrialized countries, 

with difference in magnitude or rates. The rates of inflation in developing countries are more 

than those in the developed countries. Inflation may be defined as process of continuous 

increase in price of goods and services as result of: large volume of money in circulation used 

in the exchange of few goods and services.  High price of imported goods arising from 

increase in foreign price and instability of international exchange rate, sub-charge from port 

congestion, storage facilities, marketing arrangements plus the distribution network. There 

has been an increase in the price of oil since the removal of subsidy and this led to increase in 

price of most items, and increase in transportation fare is a living example at hared (Dewett 
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and Navalur (2010). 

 

Box-Jenkins Seasonal ARIMA Model 

In time series analysis, Box and Jenkins modelling procedure, named after the statisticians 

Box and Jenkins (1970), defines stationary time series as once with constant means and 

variances. Autoregressive moving average ARMA or autoregressive integrated moving 

average ARIMA models is use to find the best fitted model to series. The past values of the 

series is use to make forecasts of present values. Univariate series is analysing using Box-

Jenkins techniques. It is basically a linear statistical techniques and most powerful for 

modelling univariate data. The SARIMA model is combination of seasonal, non-seasonal 

autoregressive, moving average and integrating parameter. The autoregressive models AR (p) 

base their forecasts of the past values of the series Xt of order (p) of past values of series and 

a random disturbance Wt. The moving average models MA (q) generate forecasts of the past 

error Wt of order (q) of past disturbances terms of variable predicted errors. 

 

W1, W2………..,.Wq. A combination of the autoregressive AR of order (p) and moving 

average MA of order(q) generates more flexible models named ARMA (p, q) models. The 

stationary of the data is required for the implementation of all these models. Box and Jenkins 

(1976) proposed the mathematical conversion of the non-stationary time series into stationary 

time series by a process of differencing, defined by an order of integration parameter d. This 

converts ARMA (p, q) models to ARIMA (p, d, q) models, Autoregressive Integrated 

Moving Average models.  

 

The ARIMA Model Building Approach Includes: 

1. Model identification  

2. Estimation 

3. Diagnosis  

4. Forecasting   

 

Identification of method may be accomplished on the basis of the series pattern, time plot and 

using correlogram to identified the model. Estimation, the parameters are estimated and 

tested for statistical significance after identifying the tentative model. If the parameter 

estimates do not meet the stationary condition, then a new model should be identified and its 

parameters are estimated and tested. In the diagnosis process, the correlogram of the residuals 

from the estimated model should be a white noise process. If the residuals remain 

significantly correlated among themselves, a new model should be identified and diagnosed. 

Once the model is selected is used for forecast. Time series analysis delivers great chances to 

detecting, describing and modelling series. Ultimately, to understand, planning and decision 

making process, it is important to study the temporal characteristic of inflation rate and 

predict the future inflation rate   in Nigeria. This can be completed by recognising the best 

model using Box and Jenkins Seasonal ARIMA modelling methods. 

 

Autoregressive (AR) Models 
An autoregressive model is a model in which one uses the statistical properties of the past 

values of the series to predict the future values. The general representation of an 

autoregressive model of order p, AR (p) is              

Yt = α +β1Yt-1 + β2Yt-2 + β1Yt-3+……………+ βpYt-p+ Wt                                                1.1  

Where the term Wt is the error term and is called white noise. β1, β2 and βp are unknown 

parameters relating Yt  ,Yt-1 ,Yt-2 and  Yt-p. 
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Moving average models of order (q) 
A moving average term in a time series models is past error multiplied by the co-efficient. 

The notation MA (q) also refers to the moving average of order q. the general representation 

of a moving average model of order (q) Yt =  + Ф1 Wt–1 + Ф2 Wt-2 +⋯+ Фq Wt-q + Wt   

 1.2 

Where the Ф1, ..., Фq are the parameters of the model, μ is the expectation of Yt (often 

assumed to equal  to 0), and the Wt, Wt-1,....Wt-q are  white noise terms. 

  

Autoregressive-Moving-Average Models (ARMA)  
We have seen from above that the AR model includes lagged terms on the series itself, and 

that the MA model includes lagged terms on the error term. By including both lagged terms, 

we arrive at ARMA model. Therefore ARMA (p,q), where p is the order of  autoregressive 

term and q the order of the moving-average term, these can generally be represented as  

Yt - β1Yt-1 - β2Yt-2 - β1Yt-3 +…… βpYt-p =  +Ф1 Wt-1+Ф2 Wt-2 +⋯+Фq Wt-q + Wt              1.3 

A time series {Yt} is said to follow an autoregressive moving average model of orders p and 

q, designated as ARMA (p, q), where βp and Фq are constants such that the model is 

stationary as well as invertible and {Wt} is a white noise process.  

Equation (1.3) can be written as: 

A (B) Xt  = B(L)Wt                                                                                                               1.4 

A (B) = 1 - β1L - β2B2 - ... – βpBp                                                                                      1.5 

B (L) = 1 + Ф1B1 + Ф2B2 + ... +ФqBq                                                                                   1.6 

B is the backshift operator defined by     

B
k

kXt = Xt-k.                                                                                                                         1.7 

 

Arima Model with Differencing 

Many time series are non-stationary. For a non-stationary time series {Yt} Box and Jenkins 

(1976) proposed that differencing up to an appropriate order is needed to make the series 

stationary. Suppose d is the minimum order of differencing necessary for stationary to be 

attained. The d
th

 difference of {Yt} is denoted by {∆
d 

Yt} where ∆
d 

is the difference operator 

defined by  ∆
d
 =1 – B. If the series {∆

d
Yt} follows the model (3), then {Yt} is said to follow 

an autoregressive integrated moving average model of order p, d and q, ARIMA (p, d, q). 

 

Seasonal Autoregressive Integrated Moving Average Model of Order (p d q) 

Seasonality usually causes the series to be non-stationary because the average values at some 

particular times within the seasonal span (months, for example) may be different from the 

average values at other times. The seasonal ARIMA model incorporates both non-seasonal 

and seasonal factors in a multiplicative model. One shorthand notation for the model is 

SARIMA (p, d, q) × (P, D, Q)S 

 

Where p = non-seasonal AR of order (p), d = non-seasonal differencing, q = non-seasonal 

MA of order (p), P = seasonal AR of order (P), D = seasonal differencing, Q = seasonal MA 

of order (Q), and S = time span of repeated seasonal pattern. Without differencing operations, 

the model could be written more formally as  

Φ(BS)φ(B)(Yt- μ) = Θ(B
s
)θ(B)Wt       1.8 

The non-seasonal components are:  

AR: φ(B) = 1 – φtB - ... – φpBp       1.9   

MA: θ(B) = 1 + θ1 B + ... + θqBq                                                                       1.10 
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The seasonal components are: Seasonal  

AR:  Φ(BS) = 1 – Φ1B
s
 - ... - ΦpB

sp
                                     1.11 

MA: Θ;’k(B
s
) = 1 + Θ1B

s
 + ... + ΘQB

SQ      
1.12 

 

Seasonal differencing is defined as a difference between a value and a value with lag that is a 

multiple of S. With S = 12, which may occur with monthly data, a seasonal difference is  

(1-B12)Yt= Yt- Yt12         1.13 

 

The differences (from the previous year) may be about the same for each month of the year 

giving us a stationary series. Seasonal differencing removes seasonal trend and can also get 

rid of a seasonal random walk type of non-stationary. Non-seasonal differencing: If trend is 

present in the data, we may also need non-seasonal differencing. Often a first non-seasonal 

difference will “de-trend” the data. 

 

Objective of Study 

The purpose of this research is to Model and forecast inflation rate using SARIMA model 

 

To achieve this goal, the following objectives are in focus. 

Conduct a preliminary check on the data obtained the trend and seasonal components of 

inflation. 

i. Conduct test for stationality on the series using the Augmented Dickey Fuller test.  

ii. Establish best the fitted model for the observations  

iii. Forecast inflation rate for 12 months using the best fit model  

 

Statement of the Hypothesis 
HO: There is significant difference in inflation rates in Nigerian. 

HO: The pattern of inflation rates in Nigeria is not regular from year to year 

 

Significance of Study 

The significance of the study lies on the fact that seasonal modelling of inflation rate in 

Nigeria, will give a more realistic outlook on how the population as a whole is being affected 

during increase in prices of goods and services. It is believed that a study of this nature will 

expose the suffering of masses, policy makers, corporate bodies etc. through its findings, for 

formulating of most effective plans on how they can cope with inflation and better life for 

every citizen. This research will be of immense importance for students in statistics as a basis 

for further research work, assist the planning of unit of government through the provision of 

more efficient information on the effectiveness of their anti-inflationary policies.  It will help 

individuals and corporations in the planning of their marketing, inflation fluctuation and 

trends are of great interest to economist as well as agriculturists in view of the important role 

of prices in the market Etuk et al, (2012). 

 

Scope of the Study 

Seasonal ARIMA modelling and forecasting of inflation rate in Nigerian and for effective 

coverage, the data for this work are inflation rate obtained from Central Bank of Nigeria 

website (http://www.centralbank.org). 

 

Limitations of the Study 

As already stated in the purpose of study, this research is specifically carried out to model 

and forecast inflation rate in Nigeria, however the work is only limited to fourteen years 

http://www.centralbank.org/
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(2003-2016). Hence the expected precision may not be so much. This is because the larger 

the number of observation, the greater the efficiency of the estimate made from the statistical 

data. Another limitation is on data collection. Data collection is not an easy task to carry out 

as a result of the confidentiality of data. This scope of this research has been limited to lack 

of adequate and relevant information from the central bank of Nigeria (cbn), financial 

constraint, and photocopy of some relevant material and to browse for more information on 

the internet. There is also the inadequate of materials in the libraries that deals or discuss 

more on the topic. Lastly, the time limit or duration also constituted considerable limitation 

because the work was being done at the time normal lectures were going on. Seasonal 

ARIMA modelling and forecasting of inflation rate in Nigerian and for effective coverage, 

the data for this work are inflation rate obtained from Central Bank of Nigeria website 

(http://www.centralbank.org). 

 

Review Related Literature 

Etuket et al, (2012) “Forecasting Nigerian inflation rate by seasonal ARIMA mode” from 

2003-2011. In his discussion, the time plot show a secular trend but nor seasonality and the 

seasonal differencing show a seasonality but not trend. The no seasonal differencing produce 

no trend in the series and no clear seasonality. The plot of the ACF shows a negative spike at 

lag 12 showing seasonal MA component. The plot of the PACF shows no spike at the 

beginning suggesting a non -seasonal MA component. In his analysis, the adequate model for 

inflation rate in Nigeria follow a SARIMA (011)*(011)12 model. 

 

Etuk, Azubuike and Uchendu.(2015) “A forecasting model for monthly Nigerian treasury bill 

rates by Box-Jankins techniques” from January 2006 to December 2014. The time plot of 

data shows a downward movement from 2006 to 2009 and upward movement to 2013. The 

12 month seasonal differencing produces a horizontal trend and no seasonality. The test for 

stationary show that the monthly Treasury bill rate is stationary. The plot of the ACF shows a 

negative spike at lag 12, this indicates seasonality. The acceptable model for Treasury bill 

rates is SARIMA (011)*(011)12 model. 

 

Etuk and Amadi (2014) “A model for the forecasting of South African Rand and Nigerian 

Naira Exchange rate” from 20
th

 march 2014 to 15
th

 September 2014. The time plot of the 

series show negative secular trend. A 7 point seasonal differencing show a little negative 

trend and seasonality of period 7 in days. The test for stationary show that the series is non-

stationary. The estimated model South African Rand and Nigerian Naira exchange rate is 

SARIMA (111)*(111)7  and (011)*(211)7. 

 

Etuk (2013) “multiplicative SARIMA modelling of daily Naira-Euro exchange rates” from 

8
th

 December 2012 to 30
th 

march 3013. In his discussion, the time plot of the exchange rates 

show upward and downward trend from December 2012 to early February 2013 and there is a 

downward trend from that time to late march. Seasonality is not clear but the seasonal 

differencing and non-seasonal differencing show a negative trend but no clear seasonality in 

the exchange rates of Naira to Euro. The plot of the ACF shows a negative spike at lag 7 

which show seasonality at period 7. In his conclusion the exchange rates of Naira to Euro 

follow a SARIMA (011)*(011)7 model. 

 

Abdul-Aziz, Anokye, Kwame, munyakazi and Nuamah. (2013) “Modelling and forecasting 

rainfall pattern in Ghana as a seasonal ARIMA process” from 1974 to 2010 using the Box- 

Jenkins method. The time plot shows seasonality and trend. The test shows that the series is 

http://www.centralbank.org/
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non-stationary. The twelfth month seasonal differencing makes the series stationary. The 

ACF and PACF show a spike at lag 12 which indicate seasonality. Four model was estimated 

for the series but the adequate model was choose base on the lest BIC, which is estimated as 

SARIMA (0,0,0)*(2,1,0)12. 

 

Etuk (2013) studied the seasonal ARIMA model of Nigerian monthly Crude Oil price in U$$ 

from 2006-2011. ARIMA was used for identification and estimation. Eview Software was 

use. The seasonality was revealed by time plot and autocorrelation or correlogram. The result 

of the time plot of the series reveals a peak in 2008 and a digression in 2009. Twelve month 

differencing still yields a peak in 2008 and a deep trough in 2009. Seasonality is not clear 

from the time plot. Correlogram revealed an autocorrelation suggested the SARIMA 

(0,1,1)*(1,1,1)12 

 

Material and Method 

The relevant data needed for the work is monthly data on inflation rate (2013-2016). These 

data were obtained from Central Bank of Nigeria website (http://www.centralbank.org) 

 

Model Identification 

Identification of model consists of specifying the appropriate structure (AR, MA or ARMA) 

and order of model. Models can also be identified by looking at plots of the autocorrelation 

function (ACF) and partial autocorrelation function (PACF). Thus making sure that the 

variables are stationary, identifying seasonality in the series is done by using the time plots of 

the ACF and PACF series, to decide if autoregressive or moving average component should 

be used in the model (Box -Jenkins (1970).  

 

Estimation of Parameters  
Coefficients of the models can be estimated by maximum likelihood estimation or non-linear 

least-squares estimation methods. Estimation of parameters of AR and MA and ARMA 

models usually requires a more complicated iteration procedure Box-Jenkins, (1970) and 

Chatfield (2004).  

 

Model Diagnostic Check 
Two important elements of checking are to ensure that the residuals of the model are random, 

and to ensure that the estimated parameters are statistically significant. Plotting the mean and 

variance of residuals over time and performing a Ljung-Box test or plotting autocorrelation 

and partial autocorrelation of the residuals are also helpful to identify misspecification. 

 

Result and Discussion 

The time plot of the series is shown in figure (1). The plot show many data point, since 

inflation is a seasonal phenomenon the data shown Seasonality but not obvious trend.  The 

present of Seasonality in the Data will make it not to be stationary (A stationary series, is a 

series that has constant mean and variance). The correlogram of raw data is in figure (2), 

showing that the series is seasonal with a spike at lag 1, 12 etc. and a tapering pattern on the 

ACF and a spike at lag 1 and 13 on the PACF show a non-seasonal behaviour. 

 

Test for Stationarity 

Augmented Dickey Fuller test (unit root test) is used. The result of the (ADF) is show in 

figure (3).The value of ADF test statistics (-1.996533) is greater than -3.472813, -2.880088 

and -2.576739 at 1%, 5% and 10%. The raw data is non-stationary at critical level (1%, 5% 

http://www.centralbank.org/
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and 10%). 

 

Seasonal Differencing 

The Augmented Dickey Fuller test (ADF) for seasonal and differencing (SDINFLATION) is 

show in figure (4).Since the ADF test statistics is the grater that the critical values at 1% 5% 

and 10% it means that the data is non- stationary. 

 

Non-Seasonal Differencing of Seasonal Differences  

The Augmented Dickey Fuller test (ADF) for non-seasonal and differencing 

(DSDINFLATION) is show in figure (5). Since the ADF test statistics is less than the critical 

values at 1% 5% and 10%. The non-seasonal differencing makes the series stationary. 

 

Model Selection 

Five models were estimated and the values of the Akaike Information Criterion are show 

below, calculated using Eviews software. 

 

S/N MODEL AIC 

1 SARIMA(111)*(111)12 3.647788 

2 SARIMA(011)*(111)12 3.922079 

3 SARIMA(011)*(011)12 4.255401 

4 SARIMA(111)*(011)12 4.241093 

5 SARIMA(011)*(211)12 3.320160 

 

The best model is the model that minimise the information criterion (SARIMA 

(001)*(211)12) with AIC (3.320166) 

 

FITTED MODEL SARIMA (011)*(211)12 

The output is in figure (6), the parameter of the model 

Φ(Bs) ∇sYt= Θ(Bs)θ(B)Wt         1.14 

DSDINFLATIONt = Φ1DSDInflationt-12+Φ2 DSDInflationt-24 +θ1Wt-1+ΘiWt-12+Θ1θ1Wt-13  

1.15 

DSDInflationt = (-0.629924)DSDInflationt-12+ (-0.295980)DSDInflationt-24+(0.235627)Wt-

1+(-0.162842)Wt-12+(0.601357)Wt-13+ Wt      1.16 

 

Diagnostic Test 

The analysis of the residual is used for goodness of fit model. The plot of the residual 

correlogram shows adequacy of the model in figure (7). The model is adequate since there is 

no spike that cut  the level of the correlogram and the histogram of the residual is normally 

distributed with probability values (0.000026) is  in figure(8) 

 

Forecast 

From the model at time t+k we have 

DSD INFLATIONt+K = Φ1 DSDInflationt+K-12 + Φ2 DSDInflationt+K-24 +θ1Wt+K-1+ ΘiWt-

12+Θ1 θ1Wt+K-13  +Wt+K        1.17 

 

 

Where 

K =1, 2          1.18.  

The forecasting using the estimated model 
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DSDINFLATIONt+K = (-0.629924)DSDInflationt+K-12 + (-0.295980) DSDInflationt+K-24  

+ (0.235627)Wt+K-1 + (-0.162848)Wt-12 + (0.601357)Wt+K 

And Wt+K = 0 

The conditional expectations given the series up to time t, 

When k = 1 

DSDINFLATIONt+1=(-0.629924)DSDInflationt-11+(-0.295980)DSDInflationt-23 

+(0.235627)Wt+ (-0.162848)Wt-11+(0.601357)Wt-12    1.19 

When k=2 

DSDINFLATIONt+2 = (-0.629924)DSDInflationt-10 + (-0.295980)DSDInflationt-22 +  

(-0.162848)Wt-10+(0.601357)Wt-11…….5.6 

. 

. 

. 

. 

 

When k = 12 

DSDINFLATIONt+12 = (-0.629924)DSDInflationt + (-0.295980)DSDInflationt-12 +  

(-0.162848)Wt +(0.601357)Wt-1       2.10 

The estimated values of DSDinflation is show in figure (8) and the predicted inflation rate for 

2017 in figure (9) 

 

Conclusions  

It may be concluded that inflation rate in Nigeria follows the SARIMA (0,1,1) x (2,1,1)12 

model. This model is adequate since it has the minimise information criterion (AIC) of 

(3.320166). 

 

 
Figure (1)                                                                      Figure (2) 
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Table 1: Unit Root Test of Inflation Rate 

  

Null Hypothesis:  unit root test of  inflation  

Exogenous: Constant   

Lag Length: 12 (Fixed)   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -1.996533  0.2882 

Test critical values: 1% level  -3.472813  

 5% level  -2.880088  

 10% level  -2.576739  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(TIMEPLOT)  

Method: Least Squares   

Date: 02/10/17   Time: 10:38   

Sample (adjusted): 2004M02 2016M12  

Included observations: 155 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     TIMEPLOT(-1) -0.080617 0.040379 -1.996533 0.0478 

D(TIMEPLOT(-1)) 0.210856 0.081189 2.597121 0.0104 

D(TIMEPLOT(-2)) 0.002144 0.082171 0.026096 0.9792 

D(TIMEPLOT(-3)) -0.014312 0.078490 -0.182341 0.8556 

D(TIMEPLOT(-4)) -0.031693 0.074790 -0.423758 0.6724 

D(TIMEPLOT(-5)) 0.130610 0.073945 1.766308 0.0795 

D(TIMEPLOT(-6)) -0.189016 0.074289 -2.544327 0.0120 

D(TIMEPLOT(-7)) 0.068963 0.072570 0.950294 0.3436 

D(TIMEPLOT(-8)) 0.101279 0.070593 1.434698 0.1536 

D(TIMEPLOT(-9)) -0.118223 0.070451 -1.678088 0.0955 

D(TIMEPLOT(-10)) -0.043927 0.070930 -0.619300 0.5367 

D(TIMEPLOT(-11)) -0.039452 0.070870 -0.556687 0.5786 

D(TIMEPLOT(-12)) -0.261825 0.069727 -3.754980 0.0003 

C 0.903491 0.475811 1.898845 0.0596 

     
     R-squared 0.280727     Mean dependent var -0.024839 

Adjusted R-squared 0.214411     S.D. dependent var 1.682659 

S.E. of regression 1.491399     Akaike info criterion 3.723286 

Sum squared resid 313.6221     Schwarz criterion 3.998176 

Log likelihood -274.5547     Hannan-Quinn criter. 3.834940 

F-statistic 4.233178     Durbin-Watson stat 1.930402 

Prob(F-statistic) 0.000006    
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Table 2: Seasonal Differencing of Inflation rate 

Null Hypothesis: SINFLATION has a unit root  

Exogenous: Constant   

Lag Length: 12 (Fixed)   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -1.346136  0.6069 

Test critical values: 1% level  -3.476472  

 5% level  -2.881685  

 10% level  -2.577591  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(SINFLATION)  

Method: Least Squares   

Date: 02/10/17   Time: 11:09   

Sample (adjusted): 2005M02 2016M12  

Included observations: 143 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     SINFLATION(-1) -0.076371 0.056734 -1.346136 0.1806 

D(SINFLATION(-1)) 0.196148 0.082858 2.367268 0.0194 

D(SINFLATION(-2)) -0.022554 0.083679 -0.269525 0.7880 

D(SINFLATION(-3)) -0.085487 0.081245 -1.052211 0.2947 

D(SINFLATION(-4)) 0.063681 0.077870 0.817790 0.4150 

D(SINFLATION(-5)) -0.033990 0.075585 -0.449691 0.6537 

D(SINFLATION(-6)) -0.160165 0.073462 -2.180248 0.0311 

D(SINFLATION(-7)) 0.032633 0.071913 0.453776 0.6508 

D(SINFLATION(-8)) 0.091642 0.068961 1.328896 0.1862 

D(SINFLATION(-9)) -0.077124 0.067877 -1.136221 0.2580 

D(SINFLATION(-10)) -0.075521 0.067095 -1.125573 0.2624 

D(SINFLATION(-11)) -0.042060 0.066585 -0.631680 0.5287 

D(SINFLATION(-12)) -0.423594 0.066244 -6.394427 0.0000 

C 0.094328 0.174065 0.541911 0.5888 

     
     R-squared 0.435610     Mean dependent var 0.151049 

Adjusted R-squared 0.378733     S.D. dependent var 2.609812 

S.E. of regression 2.057066     Akaike info criterion 4.373211 

Sum squared resid 545.8663     Schwarz criterion 4.663279 

Log likelihood -298.6846     Hannan-Quinn criter. 4.491081 

F-statistic 7.658865     Durbin-Watson stat 1.875656 

Prob(F-statistic) 0.000000    
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Table 3:Non-Seasonal Differencing of Seasonal Differencing of Inflarion Rate  

Null Hypothesis: DSINFLATION has a unit root  

Exogenous: Constant   

Lag Length: 12 (Fixed)   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.430211  0.0000 

Test critical values: 1% level  -3.476805  

 5% level  -2.881830  

 10% level  -2.577668  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(DSINFLATION)  

Method: Least Squares   

Date: 02/10/17   Time: 11:11   

Sample (adjusted): 2005M03 2016M12  

Included observations: 142 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     DSINFLATION(-1) -1.777369 0.276409 -6.430211 0.0000 

D(DSINFLATION(-1)) 0.975148 0.231197 4.217816 0.0000 

D(DSINFLATION(-2)) 0.910381 0.215968 4.215352 0.0000 

D(DSINFLATION(-3)) 0.785160 0.200129 3.923274 0.0001 

D(DSINFLATION(-4)) 0.832075 0.182283 4.564739 0.0000 

D(DSINFLATION(-5)) 0.752703 0.175446 4.290232 0.0000 

D(DSINFLATION(-6)) 0.558049 0.160758 3.471363 0.0007 

D(DSINFLATION(-7)) 0.575530 0.141560 4.065625 0.0001 

D(DSINFLATION(-8)) 0.644519 0.130089 4.954444 0.0000 

D(DSINFLATION(-9)) 0.540727 0.121343 4.456188 0.0000 

D(DSINFLATION(-10)) 0.438576 0.111672 3.927365 0.0001 

D(DSINFLATION(-11)) 0.378663 0.094276 4.016527 0.0001 

D(DSINFLATION(-12)) -0.082084 0.074841 -1.096783 0.2748 

C 0.105515 0.174755 0.603788 0.5471 

     
     R-squared 0.610537     Mean dependent var 0.008380 

Adjusted R-squared 0.570982     S.D. dependent var 3.156877 

S.E. of regression 2.067738     Akaike info criterion 4.384174 

Sum squared resid 547.2690     Schwarz criterion 4.675593 

Log likelihood -297.2763     Hannan-Quinn criter. 4.502595 

F-statistic 15.43519     Durbin-Watson stat 2.004537 

Prob(F-statistic) 0.000000    
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Table 4: Estimation of SARIMA(011)*(211) 

Dependent Variable: DSDINFLATION  

Method: Least Squares   

Date: 03/28/17   Time: 11:02   

Sample (adjusted): 2006M02 2016M12  

Included observations: 131 after adjustments  

Failure to improve SSR after 20 iterations  

MA Backcast: 2005M01 2006M01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.062870 0.092674 0.678401 0.4988 

AR(12) -0.629924 0.062470 -10.08368 0.0000 

AR(24) -0.295980 0.047128 -6.280283 0.0000 

MA(1) 0.235627 0.064728 3.640264 0.0004 

MA(12) -0.162848 0.067226 -2.422384 0.0169 

MA(13) 0.601357 0.068558 8.771481 0.0000 

     
     R-squared 0.679903     Mean dependent var 0.061832 

Adjusted R-squared 0.667099     S.D. dependent var 2.157047 

S.E. of regression 1.244563     Akaike info criterion 3.320166 

Sum squared resid 193.6172     Schwarz criterion 3.451854 

Log likelihood -211.4708     Hannan-Quinn criter. 3.373676 

F-statistic 53.10137     Durbin-Watson stat 1.794553 

Prob(F-statistic) 0.000000    

     
     Inverted AR Roots  .93-.17i      .93+.17i    .90-.32i  .90+.32i 

  .72-.62i      .72+.62i    .62+.72i  .62-.72i 

  .32+.90i      .32-.90i    .17+.93i  .17-.93i 

 -.17+.93i     -.17-.93i   -.32+.90i -.32-.90i 

 -.62-.72i     -.62+.72i   -.72+.62i -.72-.62i 

 -.90+.32i     -.90-.32i   -.93-.17i -.93+.17i 

Inverted MA Roots  .90-.22i      .90+.22i    .70+.62i  .70-.62i 

  .34-.89i      .34+.89i   -.12+.96i -.12-.96i 

 -.56+.81i     -.56-.81i   -.88-.46i -.88+.46i 

      -1.00   
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Figure 3:  

 

 

Table 5: Forecast Value of Inflation from January 2017 to December 2017 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

18.735 18.705 19.75 20.533 21.533 22.935 23.549 23.629 24.229 24.269 24.324 24.761 
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